Brüche dividieren
In diesem Kapitel beschäftigen wir uns mit dem Dividieren von Brüchen.
Notwendiges Vorwissen: Brüche multiplizieren
a) Einen Bruch durch einen Bruch dividieren
Durch einen Bruch wird dividiert,
indem man mit seinem Kehrwert multipliziert.
\[\frac{a}{b} : \frac{{\color{red}c}}{{\color{blue}d}} = \frac{a}{b} \cdot \frac{{\color{blue}d}}{{\color{red}c}}\]
Beispiel
\[\frac{2}{3} : \frac{{\color{red}5}}{{\color{blue}4}} = \frac{2}{3} \cdot \frac{{\color{blue}4}}{{\color{red}5}} = \frac{2 \cdot 4}{3 \cdot 5} =\frac{8}{15}\]
Sonderfall: Eine Zahl durch einen Bruch dividieren
\[4 : \frac{{\color{red}3}}{{\color{blue}7}} = 4 \cdot \frac{{\color{blue}7}}{{\color{red}3}} = \frac{4 \cdot 7}{3} = \frac{28}{3}\]
b) Einen Bruch durch eine Zahl dividieren
Ein Bruch wird durch eine Zahl dividiert,
indem man den Bruch mit dem Kehrwert der Zahl multipliziert.
\[\frac{a}{b} : {\color{red}c} = \frac{a}{b} \cdot \frac{1}{{\color{red}c}}\]
Beispiel
\[\frac{3}{4} : {\color{red}5} = \frac{3}{4} \cdot \frac{1}{{\color{red}5}} = \frac{3 \cdot 1}{4 \cdot {\color{red}5}} = \frac{3}{20}\]
Wie man Brüche dividiert, in denen Variablen vorkommen, erfährst du im Kapitel Bruchterme dividieren. Du wirst sehen, dass die Vorgehensweise (fast) genau dieselbe ist.
Bruchrechnung von A bis Z
In den folgenden Kapiteln findest du alles zum Thema Bruchrechnung:
Brüche | \[\frac{\text{Zähler}}{\text{Nenner}}\] |
> Echter Bruch | Zähler < Nenner |
> Stammbruch | Zähler = 1 |
> Zweigbruch | Zähler > 1 |
> Unechter Bruch | Zähler \(\geq\) Nenner |
> Scheinbruch | Zähler ist Vielfaches von Nenner |
> Dezimalbruch | Nenner = \(10^n\) |
Brüche erweitern | \[\frac{a}{n} = \frac{a \cdot {\color{red}p}}{n \cdot {\color{red}p}}\] |
> Erweiterungszahl | |
Brüche kürzen | \[\frac{a\cancel{{\color{red}p}}}{n\cancel{{\color{red}p}}} = \frac{a}{n}\] |
> Kürzungszahl | |
Brüche gleichnamig machen | |
> Gleichnamige Brüche | \(=\) gleicher Nenner |
> Ungleichnamige Brüche | \(=\) unterschiedlicher Nenner |
Kehrwert | \[\frac{1}{x} \text{ bzw. } x^{-1}\] |
Brüche addieren |
a) Gleichnamige Brüche \[\frac{a}{{\color{green}n}} + \frac{b}{{\color{green}n}} = \frac{a+b}{{\color{green}n}}\] b) Ungleichnamige Brüche \(\Rightarrow\) Brüche gleichnamig machen |
Brüche subtrahieren |
a) Gleichnamige Brüche \[\frac{a}{{\color{green}n}} - \frac{b}{{\color{green}n}} = \frac{a-b}{{\color{green}n}}\] b) Ungleichnamige Brüche \(\Rightarrow\) Brüche gleichnamig machen |
Brüche multiplizieren | \[\frac{a}{m} \cdot \frac{b}{n} = \frac{a \cdot b}{m \cdot n}\] |
Brüche dividieren | \[\frac{a}{m} : \frac{b}{n} = \frac{a}{m} \cdot \frac{n}{b}\] |
Doppelbruch | \[\frac{\frac{a}{b}}{\frac{c}{d}}\] |
Brüche vergleichen | |
Gleichheit von Brüchen | \(\frac{a}{b} = \frac{c}{d}\) oder \(\frac{a}{b} \neq \frac{c}{d}\) |
Brüche vergleichen | \(\frac{a}{b} > \frac{c}{d}\), \(\frac{a}{b} = \frac{c}{d}\) oder \(\frac{a}{b} < \frac{c}{d}\) |
Brüche umwandeln | |
Brüche umwandeln | [6 Unterkapitel!] |
Bruchterme | |
Bruchterme | [8 Unterkapitel!] |
Lob, Kritik, Anregungen? Schreib mir!

Mein Name ist Andreas Schneider und ich betreibe seit 2013 hauptberuflich die kostenlose und mehrfach ausgezeichnete Mathe-Lernplattform www.mathebibel.de. Jeden Monat werden meine Erklärungen von bis zu 1 Million Schülern, Studenten, Eltern und Lehrern aufgerufen. Nahezu täglich veröffentliche ich neue Inhalte. Abonniere jetzt meinen Newsletter und erhalte 3 meiner 46 eBooks gratis!
PS: Schon die aktuelle Folge meiner #MatheAmMontag-Reihe gesehen?
Jetzt Mathebibel TV abonnieren und keine Folge mehr verpassen!