Zusammengesetztes Ereignis

In diesem Kapitel schauen wir uns an, was ein zusammengesetztes Ereignis ist.

Wiederholung: Zufallsexperiment, Ergebnis, Ergebnisraum und Ereignis

  • Ein Zufallsexperiment ist ein Versuch mit zufälligem Ausgang.
    Beispiel: Werfen eines Würfels
  • Der Ausgang eines Zufallsexperiments heißt Ergebnis \(\omega\) („Klein-Omega“).
    Beispiel (Würfelwurf): \(\omega_1 = 1\), \(\omega_2 = 2\), \(\omega_3 = 3\), \(\omega_4 = 4\), \(\omega_5 = 5\), \(\omega_6 = 6\)
  • Die Menge aller möglichen Ergebnisse heißt Ergebnisraum \(\Omega\) („Groß-Omega“).
    Beispiel (Würfelwurf): \(\Omega = \{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5,\omega_6\} = \{1,2,3,4,5,6\}\)

  • Jede Teilmenge \(E\) des Ergebnisraums \(\Omega\) heißt Ereignis.
    Beispiel (Würfelwurf): \(E\colon \text{„Gerade Augenzahl“} \quad \Rightarrow \quad E = \{2, 4, 6\}\)

Problemstellung

Wir wollen ein Ereignis formulieren, das mehr als ein Element von \(\Omega\) enthält.

Beispiel: „Wer eine gerade Zahl würfelt, gewinnt“

\(E\colon \text{„Gerade Augenzahl“} \quad \Rightarrow \quad E = \{2, 4, 6\}\)

Ein Ereignis, das mehr als ein Element enthält, heißt zusammengesetztes Ereignis.

Zusammengesetzte Ereignisse setzen sich aus mehreren Elementarereignissen zusammen.

Das bekannteste zusammengesetzte Ereignis ist das sichere Ereignis.

Grundlagen der Wahrscheinlichkeitsrechnung

Die Wahrscheinlichkeitsrechnung baut auf folgenden Grundbegriffen auf:

  Bezeichnung Beispiel
Zufallsexperiment   Werfen eines Würfels
Ergebnis \(\omega\) („Klein-Omega“) Augenzahl 4 \(\Rightarrow \omega = 4\)
Ergebnisraum \(\Omega\) („Groß-Omega“) \(\Omega = \{1, 2, 3, 4, 5, 6\}\)
Ereignis ein lat. Großbuchstabe
(z. B. \(A, B, C\dots\))
\(E\colon \text{„Augenzahl kleiner 4“}\)
\(\Rightarrow E = \{1, 2, 3\}\)
Ereignisraum \(\mathcal{P}(\Omega)\) \(\mathcal{P}(\Omega) = \{\{\,\}, \{1\},\dots,\{1, 2, 3, 4, 5, 6\}\}\)

PS: Wir empfehlen euch, die Mengenlehre noch einmal zu wiederholen!

Lob, Kritik, Anregungen? Schreib mir!

Andreas Schneider

Mein Name ist Andreas Schneider und ich betreibe seit 2013 hauptberuflich die kostenlose und mehrfach ausgezeichnete Mathe-Lernplattform www.mathebibel.de. Jeden Monat werden meine Erklärungen von bis zu 1 Million Schülern, Studenten, Eltern und Lehrern aufgerufen. Nahezu täglich veröffentliche ich neue Inhalte. Abonniere jetzt meinen Newsletter und erhalte 3 meiner 46 eBooks gratis!

PS: Schon die aktuelle Folge meiner #MatheAmMontag-Reihe gesehen?

Jetzt Mathebibel TV abonnieren und keine Folge mehr verpassen!