Sicheres Ereignis

In diesem Kapitel schauen wir uns an, was das sichere Ereignis ist.

Wiederholung: Zufallsexperiment, Ergebnis, Ergebnisraum und Ereignis

  • Ein Zufallsexperiment ist ein Versuch mit zufälligem Ausgang.
    Beispiel: Werfen eines Würfels
  • Der Ausgang eines Zufallsexperiments heißt Ergebnis \(\omega\) („Klein-Omega“).
    Beispiel (Würfelwurf): \(\omega_1 = 1\), \(\omega_2 = 2\), \(\omega_3 = 3\), \(\omega_4 = 4\), \(\omega_5 = 5\), \(\omega_6 = 6\)
  • Die Menge aller möglichen Ergebnisse heißt Ergebnisraum \(\Omega\) („Groß-Omega“).
    Beispiel (Würfelwurf): \(\Omega = \{\omega_1,\omega_2,\omega_3,\omega_4,\omega_5,\omega_6\} = \{1,2,3,4,5,6\}\)

  • Jede Teilmenge \(E\) des Ergebnisraums \(\Omega\) heißt Ereignis.
    Beispiel (Würfelwurf): \(E\colon \text{„Gerade Augenzahl“} \quad \Rightarrow \quad E = \{2, 4, 6\}\)

  • Ein Ereignis \(E\) tritt ein, wenn das Ergebnis \(\omega\) ein Element von \(E\) ist.
    Beispiel (Würfelwurf): Wir würfeln eine \(4\) \(\Rightarrow\) \(E = \{2, 4, 6\}\) ist eingetreten.

Problemstellung

Wir wollen ein Ereignis formulieren, das alle Elemente von \(\Omega\) enthält - folglich immer eintritt.

Beispiel: „Wer eine Zahl zwischen 1 und 6* würfelt, gewinnt“

*Ein handelsüblicher Würfel hat sechs Seiten und zeigt die Augenzahlen 1 bis 6.

\(E\colon \text{„Augenzahl zwischen 1 und 6“} \quad \Rightarrow \quad E = \{1, 2, 3, 4, 5, 6\}\)

Wir erkennen, dass das Ereignis \(E\) alle Elemente des Ergebnisraums \(\Omega\) enthält.
Daraus folgt: Egal, welche Augenzahl wir würfeln, das Ereignis \(E\) tritt immer ein!

Das Ereignis, das alle Elemente von \(\Omega\) enthält, heißt sicheres Ereignis.

Das sichere Ereignis ist ein zusammengesetztes Ereignis.

Grundlagen der Wahrscheinlichkeitsrechnung

Die Wahrscheinlichkeitsrechnung baut auf folgenden Grundbegriffen auf:

  Bezeichnung Beispiel
Zufallsexperiment   Werfen eines Würfels
Ergebnis \(\omega\) („Klein-Omega“) Augenzahl 4 \(\Rightarrow \omega = 4\)
Ergebnisraum \(\Omega\) („Groß-Omega“) \(\Omega = \{1, 2, 3, 4, 5, 6\}\)
Ereignis ein lat. Großbuchstabe
(z. B. \(A, B, C\dots\))
\(E\colon \text{„Augenzahl kleiner 4“}\)
\(\Rightarrow E = \{1, 2, 3\}\)
Ereignisraum \(\mathcal{P}(\Omega)\) \(\mathcal{P}(\Omega) = \{\{\,\}, \{1\},\dots,\{1, 2, 3, 4, 5, 6\}\}\)

PS: Wir empfehlen euch, die Mengenlehre noch einmal zu wiederholen!

Andreas Schneider

Hat dir meine Erklärung geholfen?
Facebook Like Button
Für Lob, Kritik und Anregungen habe ich immer ein offenes Ohr.

Weiterhin viel Erfolg beim Lernen!

Andreas Schneider

PS: Ich freue mich, wenn du mir mal schreibst!

JETZT NEU! Löse eine Matheaufgabe und gewinne einen 25 € Amazon-Gutschein!