Skalarmultiplikation
In diesem Kapitel schauen wir uns an, was die Skalarmultiplikation ist.
Rechnerische Skalarmultiplikation
Wird ein Vektor $\vec{v}$ mit einem Skalar (einer reellen Zahl) $\lambda$ multipliziert, wird jede Komponente des Vektors mit dieser Zahl multipliziert:
$$ \lambda \cdot \vec{v} = \lambda \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \lambda \cdot x \\ \lambda \cdot y \\ \lambda \cdot z \end{pmatrix} $$
Die Skalarmultiplikation ist auch unter S-Multiplikation
oder Skalare Multiplikation
bekannt.
Multipliziere den Vektor $\vec{v} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ mit dem Skalar $\lambda = 5$.
$$ \lambda \cdot \vec{v} = 5 \cdot \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \cdot 2 \\ 5\cdot 1 \\ 5 \cdot 2 \end{pmatrix} = \begin{pmatrix} 10 \\ 5 \\ 10 \end{pmatrix} $$
Graphische Skalarmultiplikation
Multipliziert man einen Vektor mit einem Skalar $c$, wird der Vektor – in Abhängigkeit des Wertes des Skalars – verlängert, verkürzt und/oder er ändert seine Orientierung.
$c > 1$: Der Vektor wird verlängert.$0 < c < 1$: Der Vektor wird verkürzt.$c < 0$: Der Vektor ändert seine Orientierung.
Die folgenden Beispiele beziehen sich auf den Vektor


