Disjunkte Mengen

In diesem Kapitel schauen wir uns an, was disjunkte Mengen sind.
Grundkenntnisse der Mengenlehre werden als bekannt vorausgesetzt.

Wiederholung

Bei der Betrachtung von Mengen interessieren wir uns oftmals dafür, wie diese sich zueinander verhalten. Die Frage ist also: In welcher Beziehung stehen \(A\) und \(B\) zueinander?

Mengenbeziehungen

  • \(A\) und \(B\) sind gleich
  • \(A\) ist in \(B\) enthalten (oder: \(B\) ist in \(A\) enthalten)
  • \(A\) überdeckt \(B\) teilweise
  • \(A\) und \(B\) sind voneinander verschieden

Im Folgenden schauen wir uns ein Beispiel für disjunkte Mengen an:

Beispiel

\(A = \{1, 2, 3\}\)
\(B = \{4, 5\}\)

Beobachtung
\(A\) und \(B\) sind voneinander verschieden.

Mathematische Sprechweise
\(A\) und \(B\) sind disjunkt (elementfremd).

Wir merken uns:

Zwei Mengen, die kein gemeinsames Element besitzen, heißen disjunkt.

In der Mathematik wird die Disjunktheit zweier Mengen häufig über deren Schnittmenge definiert.

Definition disjunkter Mengen

Zwei Mengen, deren Schnittmenge leer ist, heißen disjunkt.

\(A \cap B = \emptyset \quad \Leftrightarrow \quad A \text{ und } B \text{ sind disjunkt}\)

Mehr zum Thema Mengenlehre

Im Zusammenhang mit der Mengenlehre gibt es einige Themen, die in Klausuren immer wieder abgefragt werden. Daher lohnt es sich, die folgenden Kapital nacheinander durchzuarbeiten.

  Symbol Bedeutung
Mengenschreibweise    
     
Leere Menge \(\emptyset\) \(= \text{Menge, die keine Elemente enthält}\)
Mächtigkeit \(|A|\) \(= \text{Anzahl der Elemente von } A\)
     
Potenzmenge \(\mathcal{P}(A)\) \(:= \{X~|~X \subseteq A\}\)
Mengenbeziehungen    
Gleichheit von Mengen \(A = B\) \(:\Leftrightarrow~\forall x~(x \in A \Leftrightarrow x \in B)\)
Teilmenge \(A \subseteq B\) \(:\Leftrightarrow \forall x~(x \in A \Rightarrow x \in B)\)
Disjunkte Mengen \(A \cap B = \emptyset\) \(= \text{Mengen ohne gemeinsame Elemente}\)
Mengenverknüpfungen    
Vereinigungsmenge \(A \cup B\) \(:= \{x~|~x \in A ~\vee~ x \in B\}\)
Schnittmenge \(A \cap B\) \(:= \{x~|~x \in A ~\wedge~ x \in B\}\)
Differenzmenge \(A \setminus B\) \(:= \{x~|~x \in A ~\wedge~ x \notin B\}\)
- Komplement \(\bar{A}_B\) \(:= \{x \,|\, x \in B \enspace \wedge \enspace x \notin A\}\)
Symmetrische Differenz \(A \bigtriangleup B\) \(:= \{x~|~(x \in A ~\wedge~ x \notin B) \vee (x \in B ~\wedge~ x \notin A)\}\)
Kartesisches Produkt \(A \times B\) \(:= \{(a,b)~|~a \in A ~\wedge~ b \in B\}\)

Hinweis:
Zur Definition von mathematischen Symbolen wird für gewöhnlich ein Doppelpunkt vor einem Gleichheitszeichen benutzt, dabei wird der links (beim Doppelpunkt) stehende Ausdruck durch den anderen definiert. Das Doppelpunkt-Gleichheitszeichen \(:=\) spricht man "ist definitionsgemäß gleich". Häufig wird der Doppelpunkt einfach weggelassen.

Andreas Schneider

Hat dir meine Erklärung geholfen?
Facebook Like Button
Für Lob, Kritik und Anregungen habe ich immer ein offenes Ohr.

Weiterhin viel Erfolg beim Lernen!

Andreas Schneider

PS: Ich freue mich, wenn du mir mal schreibst!