Gleichnamige Brüche

In diesem Kapitel schauen wir uns an, was gleichnamige Brüche sind.

Brüche mit gleichem Nenner heißen gleichnamig.

Beispiele

\(\frac{1}{{\color{green}4}}\) und \(\frac{3}{{\color{green}4}}\) sind gleichnamig.

\(\frac{5}{{\color{green}7}}\) und \(-\frac{4}{{\color{green}7}}\) sind gleichnamig.

\(\frac{2 - b}{{\color{green}3a}}\) und \(\frac{2 + b}{{\color{green}3a}}\) sind gleichnamig.

\(\frac{9x + 1}{{\color{green}(x-1)(x+1)}}\) und \(\frac{7x - 3}{{\color{green}(x-1)(x+1)}}\) sind gleichnamig.

\(\frac{4}{{\color{red}5}}\) und \(\frac{4}{{\color{red}7}}\) sind ungleichnamig.
(Begründung: Die Nenner der beiden Brüche sind unterschiedlich!)

Für die Addition (> Brüche addieren) und die Subtraktion (> Brüche subtrahieren) von Brüchen ist es Voraussetzung, dass die Brüche gleichnamig sind. Ungleichnamige Brüche müssen vor der Addition/Subtraktion erst gleichnamig gemacht werden (> Brüche gleichnamig machen).

Nachdem du dich jetzt schon ein wenig mit der Bruchrechnung auskennst, bist du endlich bereit, Aufgaben selbständig zu lösen. In meinem neuen eBook zu diesem Thema findest du eine Vielzahl von Aufgaben, die dich gezielt auf die anstehende Prüfung vorbereiten.

Bruchrechnung - eBook-Cover

✔ 412 Aufgaben (sortiert nach 30 Aufgabentypen)
✔ ausführliche Schritt-für-Schritt-Lösungen
✔ geeignet für alle Bundesländer und Schularten
✔ ideal zur Prüfungsvorbereitung
✔ sofort als PDF-Datei herunterladen
✔ Bezahlung mit PayPal, SOFORT, Giropay, Kreditkarte
✔ nur 3,90 € inkl. MwSt.
     Nettopreis: 3,28 € zzgl. 19 % Mehrwertsteuer

Jetzt kaufen und herunterladen

14-Tage-Geld-zurück-Garantie (> Widerrufsbelehrung)

Leseprobe: Bruchrechnung - Erklärungen, Aufgaben, Lösungen

Bruchrechnung von A bis Z

In den folgenden Kapiteln findest du alles zum Thema Bruchrechnung:

Brüche \[\frac{\text{Zähler}}{\text{Nenner}}\]
> Echter Bruch Zähler < Nenner
> Stammbruch Zähler = 1
> Zweigbruch Zähler > 1
> Unechter Bruch Zähler \(\geq\) Nenner
> Scheinbruch Zähler ist Vielfaches von Nenner
> Dezimalbruch Nenner = \(10^n\)
Brüche erweitern \[\frac{a}{n} = \frac{a \cdot {\color{red}p}}{n \cdot {\color{red}p}}\]
> Erweiterungszahl  
Brüche kürzen \[\frac{a\cancel{{\color{red}p}}}{n\cancel{{\color{red}p}}} = \frac{a}{n}\]
> Kürzungszahl  
Brüche gleichnamig machen  
> Gleichnamige Brüche \(=\) gleicher Nenner
> Ungleichnamige Brüche \(=\) unterschiedlicher Nenner
Kehrwert \[\frac{1}{x} \text{ bzw. } x^{-1}\]
Brüche addieren

a) Gleichnamige Brüche

\[\frac{a}{{\color{green}n}} + \frac{b}{{\color{green}n}} = \frac{a+b}{{\color{green}n}}\]

b) Ungleichnamige Brüche

\(\Rightarrow\) Brüche gleichnamig machen

Brüche subtrahieren

a) Gleichnamige Brüche

\[\frac{a}{{\color{green}n}} - \frac{b}{{\color{green}n}} = \frac{a-b}{{\color{green}n}}\]

b) Ungleichnamige Brüche

\(\Rightarrow\) Brüche gleichnamig machen
Brüche multiplizieren \[\frac{a}{m} \cdot \frac{b}{n} = \frac{a \cdot b}{m \cdot n}\]
Brüche dividieren \[\frac{a}{m} : \frac{b}{n} = \frac{a}{m} \cdot \frac{n}{b}\]
Doppelbruch \[\frac{\frac{a}{b}}{\frac{c}{d}}\]
Brüche vergleichen  
Gleichheit von Brüchen \(\frac{a}{b} = \frac{c}{d}\) oder \(\frac{a}{b} \neq \frac{c}{d}\)
Brüche vergleichen \(\frac{a}{b} > \frac{c}{d}\), \(\frac{a}{b} = \frac{c}{d}\) oder \(\frac{a}{b} < \frac{c}{d}\)
Brüche umwandeln  
Brüche umwandeln [6 Unterkapitel!]
Bruchterme  
Bruchterme [8 Unterkapitel!]

Andreas Schneider

Hat dir meine Erklärung geholfen?
Facebook Like Button
Für Lob, Kritik und Anregungen habe ich immer ein offenes Ohr.

Weiterhin viel Erfolg beim Lernen!

Andreas Schneider

PS: Ich freue mich, wenn du mir mal schreibst!

JETZT NEU! Löse eine Matheaufgabe und gewinne einen 25 € Amazon-Gutschein!